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• Description of the topic: 
 
Context: 
 
The increasing size of data generated by smartphones and IoT devices motivated the 
development of Federated Learning (FL) [1,2], a framework for on-device collaborative 
training of machine learning models. FL algorithms like FedAvg [3] allow clients to train a 
common global model without sharing their personal data; FL reduces data collection costs 
and protects clients' data privacy. In doing so it makes possible to train models on large 
datasets that would otherwise have been inaccessible.  
FL is currently used by many big data companies (e.g., Google, Apple, Facebook) for learning 
on their users' data, but we envision also promising applications to learning across large data-
silos, like hospitals that cannot share their patients' data [4]. 
 



 
Research goal: 
 
One of the main scientific challenges of FL, in comparison to other forms of distributed 
learning, is statistical heterogeneity, i.e., the fact that clients' local datasets are in general 
drawn from different distributions. Statistical heterogeneity for example slows down the 
convergence of FL algorithms [5].  
In this thesis we are interested on how statistical heterogeneity may affect users' choices. In 
particular, if a client's dataset distribution is quite different from the other distributions, the 
client may prefer to train a local model autonomously. The dissatisfied client may then 
abandon the training procedure (or refuse to join it in the future), impoverishing the aggregate 
pool of data and then the quality of the final model. Defections of some clients can then 
potentially trigger a cascade of defections as clients are less and less satisfied with the model 
learned by FL algorithms. 
 
The candidate will investigate FL adoption in a setting where users can decide to opt out from 
the federation. Insights can come from a game-theoretic study of the stability of the 
federation [6-9], leading to the design of economic incentives for users [10-12]. New FL 
algorithms can also promote clients' participation by directly maximizing the fraction of clients 
who benefit from using the global model [13], or by allowing the client to learn a personalized 
model adapted to its local distribution [14-17]. 
 
This study will need to address open issues related to quantifying statistical heterogeneity 
across clients [18, 19] and quantifying the value of each client's dataset [20-22]. These issues 
are highly relevant in the developing data economy where multiple online data exchange 
platforms, such as AWS data exchange [23] and Dawex [24]. The complexity of these issues is 
amplified in the FL setting, where each participant has only access to its own data. 
 
Candidate profile: 
 
The candidate should have a solid mathematical background (in particular on optimization) 
and in general be keen on using mathematics to model real problems and get insights. He 
should also be knowledgeable on machine learning and have good programming skills. 
Previous experiences with PyTorch or TensorFlow is a plus. 
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