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 Project Summary 
 This  project  proposes  to  explore  how  the  brain  and  machines  unlearn.  In  everyday  life, 
 disassociating  memories  is  essential—letting  us  move  on  from  fears,  mistakes,  or  outdated 
 beliefs.  However,  how  memory  systems  in  our  brains  achieve  this,  remains  unclear.  Similarly, 
 forgetting  is  a  challenge  for  artificial  intelligence:  once  a  machine  learns  something,  it’s  hard 
 to  have  it  forget.  This  has  unwanted  implications  when  machines  learn  something  wrong, 
 private,  copyrighted,  or  biased.  By  studying  brain  data  recordings  and  building  computational 
 models  that  mimic  real  populations  of  neurons,  the  project  aims  to  uncover  active  unlearning: 
 how  the  brain  learns  to  dissociate  memories.  Finally,  it  proposes  to  use  this  information  to 
 come  up  with  novel  strategies  to  make  machines  unlearn  better,  more  efficiently,  and  more 
 safely.  The  potential  impact  of  this  project  is  twofold:  i)  understanding  how  the  brain  unlearns, 
 may  help  us  design  new  strategies  against  mental  health  conditions  in  which  unlearning  is 
 impaired,  such  as  post-traumatic  stress  disorder  or  addiction.  Simultaneously,  this  project 
 has  the  potential  to  ii)  improve  AI  by  introducing  efficient  and  direct  unlearning,  thus  enabling 
 better handling of fake information,  harmful associations or private data. 

 Scientific Description 
 This  PhD  project  bridges  computational  neuroscience  and  machine  learning  to  study  the 
 mechanisms  of  active  forgetting—or  unlearning—through  the  lens  of  both  biological  and 
 artificial  systems.  Unlearning  is  crucial  for  biological  organisms  to  adapt  and  remain  flexible 
 in  dynamic  environments,  as  well  as  for  machines  to  optimize  output  integrity  by  shedding 
 outdated  or  harmful  associations.  In  this  project  we  will  draw  analogies  between  memory 
 dynamics  in  rodent  brains  and  challenges  in  machine  unlearning,  particularly  in  foundation 
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 models  such  as  Large  Language  Models.  Using  experimental  data  from  rodent 
 studies—obtained  by  electrophysiology,  fiber  photometry,  and  calcium  imaging  in  vivo 
 recordings—the  project  will  build  a  biologically  grounded  SNN  model  of  memory 
 de-association.  The  ultimate  goal  is  to  both  validate  this  model  through  experiments  and 
 apply its insights to enhance auditability and ethical deletion protocols in artificial systems. 

 Scientific aim 
 This  project  aims  to  investigate  the  neuro-computational  mechanisms  of  unlearning,  drawing 
 analogies  between  artificial  intelligence  (AI)  and  biological  neural  systems.  In  particular,  it  first 
 seeks  to  unravel  how  the  brain  unlearns  previously  encoded  information  through  the  analysis 
 of  neural  recordings  of  large  neuronal  populations  in  key  memory  areas.  Specifically,  we  aim 
 to  build  a  general  model  of  unlearning  that  combines  diverse  experimental  data  and  is 
 testable  across  multiple  unlearning  scenarios.  For  this  we  plan  to  apply  for  the  first  time 
 Spiking  Neural  Networks  (SNNs)  to  the  modeling  of  unlearning.  SNNs  have  recently  shown 
 enhanced  efficiency  in  modeling  learning  and  synaptic  plasticity  [1-3]  in  biologically  plausible 
 architectures,  but  have  not  been  used  to  unravel  the  computational  principles  of  memory 
 unlearning.  By  doing  this,  it  aims  at  assessing  whether  memory  unlearning  consists  of 
 memory  erasure  (disruption  of  an  existing  memory  trace,  referred  as  reconsolidation  update 
 in  the  field)  or  memory  sidelearning  (creation  of  a  new  memory  trace  that  inhibits  but  does 
 not  delete  the  original  one,  referred  as  extinction  learning  in  the  field),  a  currently  unresolved 
 question in the field [4]. 
 Addressing  this  issue  would  substantially  contribute  to  our  current  understanding  of  how  the 
 brain  unlearns,  a  fundamental  function  whose  impairments  are  at  the  core  of  a  number  of 
 brain  disorders,  including  PTSD,  chronic  pain,  and  anxiety  disorders.  Simultaneously, 
 unraveling  the  coding  rules  of  unlearning  has  the  potential  to  help  inspire  new  strategies  for 
 enabling efficient unlearning of target information into LLMs. 

 Scientific context 
 Large  Language  Models  (LLMs)  are  trained  on  massive  text  datasets—often  in  the  order  of 
 terabytes—making  it  almost  impossible  to  filter  out  undesirable  or  outdated  information. 
 When  wrong,  private,  or  copyrighted  information  is  used  for  training,  it  often  compromises  the 
 models  with  undesired  associations  that  must  be  subsequently  severed.  Re-training  the 
 model  may  not  be  always  viable,  and  it  easily  becomes  necessary  to  prevent  and  remove 
 particular  associations  within  the  model,  without  disrupting  its  integrity.  Inevitably,  one 
 question  arises:  how  can  we  make  LLMs  forget?  This  challenge  is  referred  to  as  Machine 
 Unlearning  .  The  unlearning  literature  for  machine  learning  models  can  roughly  be 
 categorized  into  the  following:  exact  unlearning,  "unlearning"  via  differential  privacy  and 
 empirical unlearning [5]. 

 The  problem  is  not  dissimilar  to  that  faced  by  biological  organisms,  which  have  evolved 
 efficient  strategies  to  update  outdated  or  irrelevant  information.  In  neuroscience  research,  a 
 large  body  of  literature  has  investigated  the  neural  mechanisms  that  govern  such  memory 
 unlearning processes. 
 In  rodent  models,  a  classical  example  of  unlearning,  in  which  animals  learn  to  de-associate 
 a  previously  encoded  associative  memory,  is  the  paradigm  of  fear  memory  extinction  .  In 
 this  paradigm  repeated  exposure  to  a  non-reinforced  conditioned  stimulus—such  as  a  tone 
 without  the  expected  shock—leads  to  the  progressive  suppression  of  a  previously  encoded 
 fear  memory.  This  paradigm  has  been  widely  used  to  investigate  the  neural  mechanisms  at 
 the  basis  of  the  dissociation  of  previously  linked  stimuli.  As  such,  it  has  generated  a  vast 
 body  of  data  and  detailed  characterization  of  the  associated  memory  circuits  and  their 
 dynamics.  This  vast  body  of  literature  has  led  to  the  notion  that  memories  depend  on 
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 distributed  neuronal  assemblies  known  as  engrams  ,  that  are  later  modified  for  memory 
 erasure. 

 However,  the  nature  of  these  modifications  is  still  unclear.  The  engram  networking  rules 
 mediating  memory  formation  have  been  recently  described  by  SNNs  with  great  promise,  yet 
 their  applicability  to  unlearning  remains  to  be  explored.  Here  we  propose  to  build  a 
 data-driven  SNN  model  based  on  the  extensive  experimental  data  from  memory  extinction 
 paradigms  to  unpack  the  neuronal  mechanisms  of  unlearning.  Among  these  mechanisms, 
 one  central  question  is  whether  unlearning  is  mediated  by  the  disruption  of  the  original 
 engram  (memory  erasure)  or  through  the  formation  of  a  new  memory  trace  that  competes 
 with  the  original  while  rendering  it  silent  (memory  sidelearning).  Understanding  the  variables 
 at  play  could  help  address  a  critical  issue  associated  with  silent  engrams:  while  erasure 
 leaves  no  trace,  sidelearning  preserves  memories  below  the  behavioural  threshold,  which 
 could  still  be  reactivated  under  certain  conditions.  In  a  parallel  fashion,  machine  learning 
 models  may  be  unable  to  fully  and  safely  erase  complex/distributed  undesired  information 
 due  to  the  implication  it  would  have  on  their  overall  integrity,  leaving  “sidelearning”  as  the 
 only  viable  option.  This  suggests  a  compelling  link  between  the  neuroscientific  concept  of 
 silent  engrams  and  the  auditability  problem  in  AI:  how  can  one  verify  that  a  model  no 
 longer retains a particular piece of information after a deletion request? 

 Scientific methodology 
 The  methodology  of  this  project  is  structured  around  three  main  aims,  each  designed  to 
 address a core aspect: 
 Aim 1:  Build a dataset capturing the neural dynamics of fear memory extinction 

 1.1.  Analysis  of  the  state  of  the  art  of  spiking  neural  networks,  particularly  their  use  in 
 learning and memory paradigms. 

 1.2.  Gather  and  curate  neural  activity  recording  datasets  investigating  fear  memory 
 extinction in rodents [5-11]. 

 1.3.  Develop  a  consistent  framework  to  integrate  the  heterogeneous  data  (e.g.,  fiber 
 photometry,  calcium  imaging,  or  electrophysiology  recordings)  identified  in  step 
 1.2.  TheVirtualBrain  framework  [12]  will  assist  in  effectively  managing  the 
 integration process. 

 Aim 2:  Model the computational de-association of memory traces 
 2.1.  Use  abstractions  and  frameworks  to  represent  complex  neuronal  assemblies  with 

 a small number of computational elements [1-3]. 
 2.2.  Design  and  develop  SNN  model  to  simulate  memory  decoupling  (i.e.,  unlearning 

 of  associations),  distinguishing  between  memory  sidelearning  and  memory 
 erasure. 

 2.3.  Incorporate  physics-informed  neural  networks  [13]  (PINNs)  and  Graph  Neural 
 Networks  [14[  (GNNs)  to  embed  biological  constraints,  improving  model 
 generalization  under  sparse  data  conditions.  This  step  will  build  upon  the 
 integrated  multimodal  data  layer  developed  earlier  and  will  aim  to  find  the 
 parameters  in  the  SNN  that  best  capture  the  dynamics  of  excitatory  and  inhibitory 
 populations during the unlearning process. 

 2.4.  Design  targeted  neural  recording  experiments  to  fill  potential  gaps  in  the  available 
 datasets  (specific  cell  types,  brain  areas,  behavioral  epochs).  Experimental 
 recordings  will  be  performed  by  the  Silva  team  (co-supervisor)  that  routinely  runs 
 in vivo calcium imaging during fear extinction behavioral paradigms in mice. 

 Aim 3:  Validate the model and generate testable predictions 
 3.1.  Evaluate  key  variables  within  the  model  to  investigate  overwrite  vs  sidelearning  in 

 memory unlearning. 

 3 



 3.2.  Use  the  data-driven  model  to  generate  hypotheses  on  the  nature  of  unlearning 
 and the conditions under which memories persist after fear extinction. 

 3.3.  Collaborate  with  experimentalists  (Silva  team)  to  design  and  test  these  predictions 
 experimentally in rodents. 

 Interdisciplinary Impact 
 The  project  is  grounded  in  a  strong  experimental  foundation,  generating  testable  hypotheses 
 for  validation  in  rodents.  At  the  same  time,  it  contributes  to  basic  research  on  LLMs  by 
 integrating  biological  insights  into  machine  learning.  By  developing  a  biologically  informed 
 computational  model  of  active  forgetting,  the  project  seeks  to  clarify  when  and  how  memory 
 erasure  or  sidelearning  strategies  are  preferable—both  in  biological  and  artificial  systems. 
 Crucially,  it  aims  to  inform  ethical  and  efficient  machine  unlearning  strategies  by  providing  a 
 theoretical  framework  linking  the  neuroscientific  concept  of  silent  engrams  to  the 
 auditability problem  in AI. 

 Originality 
 No  comparable  effort  has  yet  been  devoted  to  modeling  unlearning  or  de-association 
 processes  in  SNNs,  despite  the  fact  that  they  have  been  used  with  great  success  to  model 
 learning  in  mice  [1-3].  This  project  aims  to  address  this  gap.  Moreover,  the  originality  of  the 
 project  stands  on  the  fact  that  activity  recording  data  are  collected  and  integrated  in  the 
 model  from  multiple  experimental  sources,  in  the  hope  to  exploit  the  full  power  of 
 computational  modelling  to  span  over  different  orders  of  magnitude  in  both  time  and 
 space—something  crucial  in  neuroscience  but  not  easily  feasible  for  experimental 
 neuroscience or by reducing the modeling to in-lab produced data. 
 Additionally,  the  project  explores  the  use  of  Physics-Informed  Neural  Networks  (PINNs)  to 
 guide  the  parameter  setting  of  the  SNNs  based  on  experimental  data.  This  allows  for  a  more 
 unbiased  and  data-driven  approach  to  model  calibration,  overcoming  limitations  of  previous 
 models that often relied on hand-tuned or assumption-heavy parameterization. 

 Workplan 
 The work plan is structured in three phases corresponding to the methodological aims: 

 ●  Phase  1  (Months  1–12):  Literature  review,  data  collection  from  rodent  studies,  and 
 development of the integration framework. 
 Given  the  plethora  of  data  and  interest  in  the  field  to  investigate  on  the  fear  memory 
 circuit,  there  is  negligible  risk  that  we  will  have  an  irremediable  gap  in  the  data  that 
 tampers our possibilities to feed the model for our purposes. 

 ●  Phase  2  (Months  13–24):  Design  and  implementation  of  SNN  models,  incorporation 
 of biological constraints using PINNs and GNNs. 
 SNN  already  found  success  in  modelling  learning  circuits,  an  adjacent  task  to 
 unlearning  [1-3].  Meanwhile,  GNNs  have  shown  promising  results  in  connectomics 
 analyses  [14-21],  though  their  application  to  neuro-modelling  remains  largely 
 unexplored.  Similarly,  while  PINNs  are  widely  used  in  other  scientific  domains 
 [13,22-24], their integration into neuro-modelling is still in its early stages. 

 ●  Phase  3  (Months  25–36):  Model  validation,  hypothesis  generation,  and  experimental 
 collaboration to test predictions in rodents. 

 The  project  builds  upon  available  experimental  paradigms  and  computational  tools,  ensuring 
 the feasibility of each stage within a typical PhD timeline. 
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