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Project Summary

This project proposes to explore how the brain and machines unlearn. In everyday life,
disassociating memories is essential—letting us move on from fears, mistakes, or outdated
beliefs. However, how memory systems in our brains achieve this, remains unclear. Similarly,
forgetting is a challenge for artificial intelligence: once a machine learns something, it's hard
to have it forget. This has unwanted implications when machines learn something wrong,
private, copyrighted, or biased. By studying brain data recordings and building computational
models that mimic real populations of neurons, the project aims to uncover active unlearning:
how the brain learns to dissociate memories. Finally, it proposes to use this information to
come up with novel strategies to make machines unlearn better, more efficiently, and more
safely. The potential impact of this project is twofold: i) understanding how the brain unlearns,
may help us design new strategies against mental health conditions in which unlearning is
impaired, such as post-traumatic stress disorder or addiction. Simultaneously, this project
has the potential to ii) improve Al by introducing efficient and direct unlearning, thus enabling
better handling of fake information, harmful associations or private data.

Scientific Description

This PhD project bridges computational neuroscience and machine learning to study the
mechanisms of active forgetting—or unlearning—through the lens of both biological and
artificial systems. Unlearning is crucial for biological organisms to adapt and remain flexible
in dynamic environments, as well as for machines to optimize output integrity by shedding
outdated or harmful associations. In this project we will draw analogies between memory
dynamics in rodent brains and challenges in machine unlearning, particularly in foundation
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models such as Large Language Models. Using experimental data from rodent
studies—obtained by electrophysiology, fiber photometry, and calcium imaging in vivo
recordings—the project will build a biologically grounded SNN model of memory
de-association. The ultimate goal is to both validate this model through experiments and
apply its insights to enhance auditability and ethical deletion protocols in artificial systems.

Scientific aim

This project aims to investigate the neuro-computational mechanisms of unlearning, drawing
analogies between artificial intelligence (Al) and biological neural systems. In particular, it first
seeks to unravel how the brain unlearns previously encoded information through the analysis
of neural recordings of large neuronal populations in key memory areas. Specifically, we aim
to build a general model of unlearning that combines diverse experimental data and is
testable across multiple unlearning scenarios. For this we plan to apply for the first time
Spiking Neural Networks (SNNs) to the modeling of unlearning. SNNs have recently shown
enhanced efficiency in modeling learning and synaptic plasticity [1-3] in biologically plausible
architectures, but have not been used to unravel the computational principles of memory
unlearning. By doing this, it aims at assessing whether memory unlearning consists of
memory erasure (disruption of an existing memory trace, referred as reconsolidation update
in the field) or memory sidelearning (creation of a new memory trace that inhibits but does
not delete the original one, referred as extinction learning in the field), a currently unresolved
question in the field [4].

Addressing this issue would substantially contribute to our current understanding of how the
brain unlearns, a fundamental function whose impairments are at the core of a number of
brain disorders, including PTSD, chronic pain, and anxiety disorders. Simultaneously,
unraveling the coding rules of unlearning has the potential to help inspire new strategies for
enabling efficient unlearning of target information into LLMSs.

Scientific context

Large Language Models (LLMs) are trained on massive text datasets—often in the order of
terabytes—making it almost impossible to filter out undesirable or outdated information.
When wrong, private, or copyrighted information is used for training, it often compromises the
models with undesired associations that must be subsequently severed. Re-training the
model may not be always viable, and it easily becomes necessary to prevent and remove
particular associations within the model, without disrupting its integrity. Inevitably, one
guestion arises: how can we make LLMs forget? This challenge is referred to as Machine
Unlearning. The unlearning literature for machine learning models can roughly be
categorized into the following: exact unlearning, "unlearning” via differential privacy and
empirical unlearning [5].

The problem is not dissimilar to that faced by biological organisms, which have evolved
efficient strategies to update outdated or irrelevant information. In neuroscience research, a
large body of literature has investigated the neural mechanisms that govern such memory
unlearning processes.

In rodent models, a classical example of unlearning, in which animals learn to de-associate
a previously encoded associative memory, is the paradigm of fear memory extinction. In
this paradigm repeated exposure to a non-reinforced conditioned stimulus—such as a tone
without the expected shock—Ileads to the progressive suppression of a previously encoded
fear memory. This paradigm has been widely used to investigate the neural mechanisms at
the basis of the dissociation of previously linked stimuli. As such, it has generated a vast
body of data and detailed characterization of the associated memory circuits and their
dynamics. This vast body of literature has led to the notion that memories depend on
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distributed neuronal assemblies known as engrams, that are later modified for memory
erasure.

However, the nature of these modifications is still unclear. The engram networking rules
mediating memory formation have been recently described by SNNs with great promise, yet
their applicability to unlearning remains to be explored. Here we propose to build a
data-driven SNN model based on the extensive experimental data from memory extinction
paradigms to unpack the neuronal mechanisms of unlearning. Among these mechanisms,
one central question is whether unlearning is mediated by the disruption of the original
engram (memory erasure) or through the formation of a new memory trace that competes
with the original while rendering it silent (memory sidelearning). Understanding the variables
at play could help address a critical issue associated with silent engrams: while erasure
leaves no trace, sidelearning preserves memories below the behavioural threshold, which
could still be reactivated under certain conditions. In a parallel fashion, machine learning
models may be unable to fully and safely erase complex/distributed undesired information
due to the implication it would have on their overall integrity, leaving “sidelearning” as the
only viable option. This suggests a compelling link between the neuroscientific concept of
silent engrams and the auditability problem in Al: how can one verify that a model no
longer retains a particular piece of information after a deletion request?

Scientific methodology

The methodology of this project is structured around three main aims, each designed to
address a core aspect:
Aim 1: Build a dataset capturing the neural dynamics of fear memory extinction

1.1. Analysis of the state of the art of spiking neural networks, particularly their use in
learning and memory paradigms.

1.2. Gather and curate neural activity recording datasets investigating fear memory
extinction in rodents [5-11].

1.3. Develop a consistent framework to integrate the heterogeneous data (e.g., fiber
photometry, calcium imaging, or electrophysiology recordings) identified in step
1.2. TheVirtualBrain framework [12] will assist in effectively managing the
integration process.

Aim 2: Model the computational de-association of memory traces

2.1. Use abstractions and frameworks to represent complex neuronal assemblies with
a small number of computational elements [1-3].

2.2. Design and develop SNN model to simulate memory decoupling (i.e., unlearning
of associations), distinguishing between memory sidelearning and memory
erasure.

2.3. Incorporate physics-informed neural networks [13] (PINNs) and Graph Neural
Networks [14][ (GNNs) to embed biological constraints, improving model
generalization under sparse data conditions. This step will build upon the
integrated multimodal data layer developed earlier and will aim to find the
parameters in the SNN that best capture the dynamics of excitatory and inhibitory
populations during the unlearning process.

2.4. Design targeted neural recording experiments to fill potential gaps in the available
datasets (specific cell types, brain areas, behavioral epochs). Experimental
recordings will be performed by the Silva team (co-supervisor) that routinely runs
in vivo calcium imaging during fear extinction behavioral paradigms in mice.

Aim 3: Validate the model and generate testable predictions

3.1.  Evaluate key variables within the model to investigate overwrite vs sidelearning in

memory unlearning.
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3.2. Use the data-driven model to generate hypotheses on the nature of unlearning
and the conditions under which memories persist after fear extinction.

3.3.  Collaborate with experimentalists (Silva team) to design and test these predictions
experimentally in rodents.

Interdisciplinary Impact

The project is grounded in a strong experimental foundation, generating testable hypotheses
for validation in rodents. At the same time, it contributes to basic research on LLMs by
integrating biological insights into machine learning. By developing a biologically informed
computational model of active forgetting, the project seeks to clarify when and how memory
erasure or sidelearning strategies are preferable—both in biological and artificial systems.
Crucially, it aims to inform ethical and efficient machine unlearning strategies by providing a
theoretical framework linking the neuroscientific concept of silent engrams to the
auditability problem in Al.

Originality

No comparable effort has yet been devoted to modeling unlearning or de-association
processes in SNNs, despite the fact that they have been used with great success to model
learning in mice [1-3]. This project aims to address this gap. Moreover, the originality of the
project stands on the fact that activity recording data are collected and integrated in the
model from multiple experimental sources, in the hope to exploit the full power of
computational modelling to span over different orders of magnitude in both time and
space—something crucial in neuroscience but not easily feasible for experimental
neuroscience or by reducing the modeling to in-lab produced data.

Additionally, the project explores the use of Physics-Informed Neural Networks (PINNSs) to
guide the parameter setting of the SNNs based on experimental data. This allows for a more
unbiased and data-driven approach to model calibration, overcoming limitations of previous
models that often relied on hand-tuned or assumption-heavy parameterization.

Workplan

The work plan is structured in three phases corresponding to the methodological aims:
e Phase 1 (Months 1-12): Literature review, data collection from rodent studies, and
development of the integration framework.
Given the plethora of data and interest in the field to investigate on the fear memory
circuit, there is negligible risk that we will have an irremediable gap in the data that
tampers our possibilities to feed the model for our purposes.
e Phase 2 (Months 13-24): Design and implementation of SNN models, incorporation
of biological constraints using PINNs and GNNs.
SNN already found success in modelling learning circuits, an adjacent task to
unlearning [1-3]. Meanwhile, GNNs have shown promising results in connectomics
analyses [14-21], though their application to neuro-modelling remains largely
unexplored. Similarly, while PINNs are widely used in other scientific domains
[13,22-24], their integration into neuro-modelling is still in its early stages.
e Phase 3 (Months 25-36): Model validation, hypothesis generation, and experimental
collaboration to test predictions in rodents.
The project builds upon available experimental paradigms and computational tools, ensuring
the feasibility of each stage within a typical PhD timeline.
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