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Context

Hybrid AI combining data-driven and rule-driven approaches is a promising research direction that is investigated
both by international research groups, academic , Stanford, Berkeley, ...) and industrial (Google, Facebook, ...),
and French research groups in Al for mobile robotics. In robotics, most of the research fields (design, perception,
decision, motion planning, control...) have been investigated through an hybrid approach mainly rule based where
data driven algorithms are used to identify and adapt on-line parameters of dynamic systems (included in the
dynamic environment). As intelligent and autonomous systems are the main concern of the ACENTAURI team
a novel point of view must be taken. Our strategy for addressing our scientific objectives is to build a bridge
between rule-driven and data-driven approaches to artificial intelligence with the ambition to feed the models with
knowledge provided by data-driven approaches and, conversely, to constrain data-driven approaches with highly
accurate prior knowledge coming from the robot task. The first problem is hard because data-driven approaches
are able to capture knowledge that is not in the model, therefore we need to be able to interpret the results (e.g.
conceiving explainable ANNs) in order to build physically meaningful models (probably increasing their complexity).
The second problem is hard because injecting prior rule-driven knowledge into data-driven approaches implies the
design and the development of new architectures.

PhD subject

Within this context, this PhD subject will focus on sensor-based (Lidar and Stereo Vision) control. In order to
achieve autonomous navigation the robot must not only be able to localize itself but also be able to avoid all possible
obstacles in the environment. The multi-modal sensor data may be processed by deep learning models that make up
the perception module to produce the detection of navigable space. The major challenge in building the perception
module is to ensure that its deep learning models function properly in every condition. While deep learning models
perform well on data resembling their training sets, they are prone to errors when used in different scenarios [7].

Regardless of data variations, the underlying geometric characteristics and physical laws of our world remain
constant. These unchanging laws are well-described by expert models (e.g., Newton’s laws of motion, Euclidean
and Projective Geometry, ...). The objective of this PhD is to study of Hybrid TA models based on the fusion of
expert knowledge (rule-based approaches) with machine learning models (rule-based approaches). Such an hybrid
approach should combine the adaptability of machine learning with the reliability of established geometric and
physical principles.

The expert knowledge we would like to integrate into the hybrid model is the equivariance of 3D world measure-
ments with respect to the viewpoint changes. This concept states that changes in viewpoint result in predictable
transformations of the measurement of the scene. For instance, when a camera undergoes a rotation, the content
in its images rotates correspondingly in a globally predictive manner. By incorporating this expert knowledge,
deep learning models can disentangle geometric factors from appearance factors (such as colors and textures) that
vary significantly across environments. This capability of equivariant models makes them more data efficient and
generalize better to unseen data [12], resulting in more robust performance compared to their non-equivariant coun-
terparts. Mathematically, a change in viewpoint is formalized as a rigid body transformation, which belongs to the



Special Euclidean group SE(3). Therefore, the objective of this PhD is to study SE(3)-equivariant networks
for robust sensor-based control of autonomous vehicles.

As Convolutional Neural Networks (CNN) are translationally equivariant thanks to weight sharing among dif-
ferent spatial positions of the input, we seek an extension of CNN that is rotationally equivariant to achieve SE(3)
equivariance. Theoretical developments in deep learning have shown that Group equivariant CNN (G-CNN) is
the only candidate [4]. G-CNN extends the conventional CNN by additionally sharing weights among different
orientations of the input. G-CNN creates multiple rotated versions of each filter, corresponding to the rotations
in group G. During convolution, these rotated filters are applied to the input signal, generating an ordered set of
feature maps. The order of these feature maps reflects the order of rotations in G.

The principle of G-CNN is illustrated in Figl[l] The original input is the faded green lizard. The original filter
is small (circular) disc shown in the top row of the second column from the left of Fig We consider the group G
containing four counter-clockwise rotations of 0°,90°,180°, and 270°. The result of rotating the original filter using
four rotations in G is shown in the second column of Fig[l] Convoling the original input with these rotated filters
yeilds four feature maps in last column of Figl[l] Now, rotating the original input by 90° to make the green lizard.
The result of convoling the green lizard with four rotations of the original filter is shown in the second last column
of Fig[Tl] We can observe that the rotation of the input leads to the same rotation on the output.
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Figure 1: The equivariant property of the group convolution with respect to G = {0,7/2, 7,37 /2}. This image is
from [1].

Developments of G-CNN they have largely focused on its theoretical apsect while experimental validation has
been limited to small-scale synthetic datasets (e.g., Rotated MNIST [5]). The three questions to be answered are:

1. Can G-CNN process large-scale real-world data?
2. Can G-CNN deliver on its promise of better data efficiency and robustness than convetional CNN?
3. Are they efficient enough for real-time applications?

As for the first and second question, there are a number of works that integrate variants of group convolution to
CNN-based backbones to boost the performance detecting objects in in-door [I7] and outdoor point clouds [I3].
This strongly hints that full-fledged G-CNN is capable of at least matching the performance of convetional CNN
on large-scale real-world data. Concerning the last question, G-CNN clearly have a higher computational overhead
compared to convetional CNN. A possible solution to improve their inference speed is to reduce their capacity in
terms of the nubmer of layers (depth) and the number of learnable parameters in each layer (width). The tradeoff
of this solution is a reduction of performance. A comprehensive study on how on how the performance scales with
the capacity of G-CNN is necessary to find the right tradeoff.

Another problem to be adr=dressed is the robustness to domain shifts. LiDAR~based models are notorious for
their lack of robustness to domain shifts such as the change location of deployments [IT] or the change of LiDAR
[10]. These shifts result in the change in the appearance of objects as shown in F ig and Fig

Thanks to the equivariant property, G-CNN is able to disentangle geometric factors from appearance factors.
As mentioned above, appearance factors are subjected to changes by domain shifts. On the other hand, geometric
factor remain constant. Therefore, we expect that they have a better robustness against domain shifts.

The demonstration of robustness of G-CNN against domain shifts requires two different data distribution one for
training and one for testing. It worths noticing that this is different to the traditional training and testing of deep
learning models where data at both phases comes from the same distribution. We can satisfy such a requirement
by taking training and testing data from datasets collected at different locations using different type of LiDAR. For
example, the NuScenes dataset [3], which collected in Boston and Singapore using Velodyne HDL-32 LiDAR can be
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Figure 2: Changes in objects’ size due to the change of location. Blue bars denote the length of cars in the KITTI
dataset collected Germany, while the rest denotes length of cars in datasets collected in the USA. It is clear that
cars in Germany are shorter than those in the USA. This image is from [I1].

(a) Velodyne HDL-64 (b) Velodyne HDL-32

Figure 3: Changes in objects’ apperances due to the change of LIDAR model. This image is from [10].

used for training. Test data can be taken from the ZOD dataset [2] which was collected in Europe using Velodyne
VLS-128 LiDAR.

New domain adaptation methods will be derived to enable G-CNN to overcome the domain shifts that are
challenging for them. The conventional practice to adapt CNN from a source domain, which is a dataset that has
ground truth, to a new domain, which is a dataset that does not have ground truth, is to leverage self-training.
This is an iterative process where the model trained at the previous iteration generates labels to train the model
at the current iteration. At the first iteration, the labels are made by performing inference with the model trained
in the source domain.

To augment the quality of labels at any iteration, several test-time augmentation techniques are used. The most
popular among them is the gemoetric augmentation. This technique first to apply several rigid body transformation
to the original input. Next, the model produces its predictions for each transformed input. Then, the prediction of
each transformed input undergo the inverse of the transformation applied to its corresponding input, yeilding a set
of predictions. Finally, the set of predictions is aggregated into a single prediction using heuristics such as choosing
the prediction that is the most confident or average all predictions [9]. This test-time augmentation technique is
based on the heuristic that neural networks provide different prediction given different transformation applied to
an input. By aggregating the set of predictions made at various transformation, we can improve the precision of
the final prediction.

In contrast to CNN, transforming the input of a G-CNN leads to the application of the same transformation
to the G-CNN’s output. Therefore, the need for such a geometric test-time augmentation is dismissed. Instead,
we would like to explore learning techniques that leverage similarity among points belong to the same object (e.g.,
colors [8] or deep features [I6]) to address the domain adaptation challenge.

We will consider the following experimental scenario. A calibrated multi-sensor system (Lidar and Stereo-Vision)
will be mounted on a ground robot and manually driven in an unknown and dynamic environment. The acquired
data will be processed off-line to produce the multi-layer representation of the environment. This multi-layer
representation will allow to define a desired trajectory (e.g. way-points, topological graph, ...) to be executed by
the robot. Given the desired trajectory the robot will localize itself in the multi-layer representation and navigate
autonomously towards the goal. The global framework will be implemented in C/C++ under ROS2 and evaluated
using datasets acquired by our instrumented robots.

Work plan

The work will be decomposed with incremental steps as follows:

1. Bibliography on hybrid AI (gemetric informed networks and physic informed networks)



2. Choice and setup of a simulation environment and databases selection
Design of the hybrid approach

Simulation and tuning of the hybrid approach

Comparison with the state of the art techniques

Experimental results on real data

Writing of reports and conference papers

Improvement on the hybrid approach

© »® N o ooe W

Experimental results on real data acquired on ACENTAURI robots

10. Writing Phd Thesis and journal papers

Skills

The candidate is expected to have a Master in Robotics or in Computer Science, as well as solid skills in software
development (LINUX, ROS2, Git, MATLAB, C/C++, Python, Pytorch). He/she must also be highly motivated
for multidisciplinary studies and all aspects of research ranging from fundamental to experimental work. A good
level of written/spoken English is also important.

How To Apply
Interested candidates must send to Ezio Malis at ezio.malis@inria.fr the following documents:
o Motivation letter
e Curriculum vitee including the list of the scientific publications
e Bachelor and Master’s transcript
o Letter of recommendations (at least the Master thesis supervisor)
e Letter of recommendation of the PhD thesis supervisor

All the requested documents must be gathered and concatenated in a single PDF file named in the following
format: {LAST NAME of the candidate}_{Last Name of the supervisor}_June_2025.pdf.
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