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Abstract: the main objective is to explore the concept of “cognitive 3D model”, which 

is searchable, physics-informed and continuously updated. Such a concept is relevant 

for digital twin simulation and design exploration: two prevalent problems for the smart 

territories. 

 

Context. The initial great promise of 3D geometric modeling and processing was to 

achieve for shapes what had been done in digital signal processing for sound and images. 

Over the last twenty years, it has matured into an established research community 

seeking automatic, computerized processing of 3D geometric data obtained through 

measurements or designs. As our understanding of real-world data has progressed, we 

have expanded our focus to real-world systems and problems involving multiple 

practitioners. The following developments have shaped this Ph.D. topic proposal: 

• The problems posed by digital twins reveal that increasingly, geometry is only one 

dimension of the end goal in real-world applications. The latter often mingle remote 

visualization, inspection and simulation of virtual processes and physical 

phenomena. Many of the current 3D modeling approaches focus on geometry and 

color attributes only. They overlook the importance of cognition and physics.  

• The move to large-scale physical scenes and proliferation of real-time sensor systems 

operating in open environments make it possible to consider digital twin simulations, 

with continuous scene capturing. Digital twins have emphasized real-world 

problems that transcend geometry, cognitive tasks and computational physics.  

• Multiphysics simulation, recognized as engineering’s new frontier, is increasingly 

required for conceiving complex systems. Multiphysics problems correspond to the 

intersection of several physics, which often becomes a ‘grey area’, as practitioners 

are rarely experts in all the intersecting physics. The challenge is even harder as 

modern design exploration methods require many simulation queries, interlaced with 

cognitive queries. In this context, cognitive, physics-informed geometric modeling 

can provide a common ground.  



• Recent advances in machine learning and data-intensive approaches facilitate a new 

era of frontier research where geometry, cognition and physics operate in tandem, 

rather than in silos.  

State-of-the-art. The conventional approach to geometric modeling seeks to 

understand, represent and process the static geometry and visual appearance of 3D 

models, be they designed or acquired from the physical world [2], [3]. The problems 

posed within such a static, geometry-centric viewpoint are limited as they are stated 

without reference to the scene dynamics and physics. Accurate geometric 

representations can be acquired with laser scanning systems that deliver fine-grain data 

in the form of 3D point clouds with color attributes and images. However, and despite 

its high density, such representations only capture visible information, but no semantic 

or functional information. Their added value is limited as it consists of raw massive data. 

Many digital twin applications instead require data analytics and insights: i.e., the ability 

to perceive, abstract, memorize, learn and retrieve information such as presence, types, 

locations, functions, states of physical objects or systems, parameters and reference to a 

database. Today, the process of converting point cloud data into cognitive 3D models is 

still performed by manual or semi-automated tools, and limited to static scenes. As 

large-scale sites such as industrial facilities contain myriads of objects, the time and 

therefore the cost of such a conversion process is prohibitive. More specifically, the 

effort spent on modeling is estimated to ten times the time spent on capturing the scenes, 

e.g., in the order of months before a BIM (building information model) model is ready 

and usable for re-configurating a production facility. This greatly hampers the adoption 

of digital twins in industrial processes. More and more tools are available to reduce the 

efforts to generate BIM or CAD models, but they are often focused on narrow problems 

such as detection of pipes or walls. 

Similarly, most conversion methods, such as surface reconstruction from measurement 

data, rely upon basic geometric priors [4], but not on physics or cognition. The main 

consequence of a physics-unaware approach is that the post-reconstruction output 

models are both imperfect and unfit to simulation. Of particular concern is the additional 

conversion step that is required for repairing [5], [6] then discretizing each class of 

objects. Chaining multiple steps renders the simulation-from-measurements pipeline 

inconsistent with physics and brittle due to trial-and-error processes. Geometric 

modeling for the simulation of physical phenomena commonly states the problem via a 

broader set of requirements: e.g. ‘model and discretize geometric shapes adequately and 

provide high accuracy in important areas’. However, improving simulation accuracy is 

only one dimension of design exploration’s initial promise to efficiently iterate between 

simulation and modeling. Such iterations are tightly entangled in acquisition systems 

operating continuously in open physical environments.  

Methods such as error estimation and adaptive mesh refinement adapt the geometric 

model according to the characteristics of the physical solution. However, the common 

belief that sampling error dominates discretization error needs to be reevaluated due to 

uncertainties in error estimation methods. The isogeometric analysis (IGA) paradigm, 



introduced more than a decade ago [7], has been presented as the ultimate paradigm for 

bridging the gap between simulation and geometric design. Yet despite significant 

advances [8], rendering the core method (converting imperfect computer-aided-design 

(CAD) surface models into volumetric B-Splines [9]–[11]) versatile and simulation-

ready is still an open problem. In addition, IGA-based modeling of large-scale scenes is 

currently out of reach due to the inherent complexity of IGA models.

Geometric modeling for digital twins requires cognitive- and physics-informed 

principles. In such a paradigm shift, physics becomes not just an end but also a means 

to contribute novel methods and tools. 

 

Objectives. The main scientific objective is to combine geometry, cognition and 

physics. To this end, we will pursue two specific challenges: (1) enabling inspection and 

simulations on virtual replicas of the physical world accessible through sensing, and (2) 

enabling continuous modeling of physical scenes with time-varying objects. Ultimately, 

we seek geometric fidelity with rich cognition ability and consistency with physics. In 

the proposed research direction, consistency with physics is used to resolve the ill-posed 

problems that abound in geometric modeling and processing.  

Analysis through leveraging physical properties. Analysis is concerned with the 

understanding of 3D shapes [12], shape collections [13], [14], scenes [15] and situational 

awareness. As geometry and physical properties contribute jointly to several physical 

phenomena occurring in a scene, considering physics can improve the understanding of 

a scene’s geometry. More specifically, we will look beyond conventional analyses of 

visual and geometric data by utilizing any physical properties that can be measured and 

possibly simulated. We will obtain physical properties through direct sensors such as 

multispectral LiDAR or thermal imaging cameras. Coupling sensors with active devices 

such as infrared illuminators, we will model radiative transfers happening in the scene. 

Similar principles will be utilized for non-local light transport and sound capture. 

Offline, we will calibrate the acquisition system and train it to infer physics properties 

and geometry jointly. Online, the system will be fine-tuned by leveraging the active 

properties of sensors. Our physics-informed standpoint also enables us to consider the 

defects of sensors as relevant features. We will revisit sensor calibration to infer physical 

properties from defects, and generalize the idea of purposefully generating defects, such 

as out-of-focus blur [16], during acquisition to enhance physics-informed 

discrimination, where necessary. 

Continuous reconstruction. Assuming input measurement data, reconstruction is the 

process of recovering shapes that fit these data, while dealing with defect-laden data. 

The reconstruction problem is inherently ill-posed as an infinite number of shapes may 

fit the data. The common wisdom consists of regularizing the problem via adding a 

geometric [4] or semantic prior [17]. However, using a single type of prior is insufficient 



for large-scale scenes with many diverse objects. We will instead utilize physics-

informed priors, leveraging them to devise a continuous reconstruction approach. 

We will explore a progressive physics-informed approach capable of jointly improving 

data fitting and simulation accuracy. Such a progressive approach suits difficult tasks 

such as discovering sharp features and boundaries, and enables exploring a supervised 

prediction method for resolving the so-called ‘hp-dilemma’ [21]. Physics-informed 

principles will then be applied to all degrees of freedom of this approach: spatially 

regularized priors, error metrics, objective functions and predictions. As digital twins 

become increasingly prevalent for industrial facilities or construction sites, we anticipate 

the need for continuous, cognitive reconstruction of complex scenes. The cognitive 3D 

scenes, dynamically updated as new sensor-information is acquired, could overcome the 

limitations of the current mapping techniques. Key improvements include honing via 

learning physics-informed priors for static objects, and tracking time-varying objects 

with physics-informed principles. Ultimately, we wish to devise a framework that 

continuously reconstructs while seeking physical consistency with respect to properties 

such as light, radiosity, heat and motion behaviors. 

Approximation informed by physical properties/laws or the discovery thereof. 

Geometric approximation is a central component of the standard geometry processing 

toolbox [22], [23]; it is used to obtain fast approximations of various tasks such as 

rendering, processing, modeling or simulation. Some current approximation methods 

are judged ‘relevant’ for simulation problems [24], but a generic method suitable to a 

broad range of simulations has yet to be developed. Real-time simulations applied to 

complex shapes require approximate simulations that trade accuracy for processing time 

while preserving some characteristics of the full order model. Such approximations are 

commonly achieved via geometric simplification or model reduction [25], [26]. Despite 

major advances, these methods still simplify the physics in a manner that is 

insufficiently related to the geometry. We seek to explore a generic method that 

approximate geometry and physics while discovering the physical laws of settings where 

we can only invoke a black-box physics engine, i.e., when physical laws are unknown. 

These cases abound in multiphysics problems, when differentiable physics engines are 

inoperative. The problem amounts to discovering the laws of physics while only having 

access to physical experiments. The favored research direction is an adaptive learning 

framework invoking a physics engine on diverse geometric training data [29].  

 

Application to digital twins. We will apply our algorithms for cognitive digital twin 

modeling, in collaboration with local academic or industrial partners. A key issue is to 

model during continuous acquisition in dense, crowded or hazardous environments. We 

will validate the relevance of our methods on digital twins for industrial facilities.  
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