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• Description of the topic: 
 
Several factors can contribute to missing values in a study, including data loss, sensor 
failures, or the aggregation of datasets from multiple sources. There is a rich literature on 
how to impute missing values, for example, considering the EM algorithm [Dempster et al., 
1977], low rank models [Sportisse et al., 2020], random forests [Stekhoven and Buhlmann, 
2012] or deep learning techniques with variational autoencoders [Mattei and Frellsen, 2019, 
Ipsen et al., 2021]. 
 
One limitation of all these techniques is that they are all indirect, in the sense that the loss 
function that is optimised is not the imputation error. The main challenge is that, in 
practice, we do not have access to the unobserved values, and therefore, cannot compute 
this error. The goal of this postdoc will be to develop a direct method, based on self-
supervised learning. The closest related works are two papers using masked generative 
modelling [Tashiro et al., 2021, An et al., 2024]. However, both techniques remain indirect in 
these sense of the previous paragraph.  
 



An important second step would be to quantify the uncertainty of these imputations, for 
instance through multiple imputations [Little and Rubin, 2019] or conformal prediction 
[Angelopoulos et al., 2023]. 
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