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Context. In the theory of dynamical systems, loosely speaking, a meta-stable state is a region in phase
or conformational space where the system remains sufficiently long before jumping to another such state,
via some transition which is in general a rare event. Equivalently, such a state may be characterized by
a local ergodicity property, meaning that for such a region and at the relevant time scale, spatial averages
equal time averages [1]. A key difficulty for complex systems, for example a protein molecular undergoing
conformational changes, or a dynamical system modeling the climate, is to understand the multiple scales
at which the system is meta stable.

In the theory of statistical hypothesis testing [2], a two-sample test is a statistical test aiming at detecting
whether two collections of samples (e.g. in a high dimensional space, on a manifold, etc) have the same
underlying distribution. The test is termed online if the number of samples is not fixed a priori, but the test
accommodates two sources of data providing samples online.

Goals. The goal of this PhD thesis is to develop a novel approach for the detection of meta-stable states in
dynamical systems, using ideas from geometry, information theory, and statistical hypothesis testing [3, 4, 5].
Two applications will be considered. The first one is the problem of sampling protein conformations using
advanced proposals or move sets studied [6], an especially challenging case since protein motions span 15
orders of magnitude in time scales [7][8]. The second one is the assessment of the convergence of MCMC
processes used in machine learning to learn generative models, including Boltzmann samplers [9] and Bayesian
models [10, 11], to make such models more robust and sustainable.

The work envisioned encompasses the design and mathematical analysis of algorithms, their coding (C++
and python), as well their experimental evaluation.

Training. Master 2 or equivalent degree in Computer science (algorithms) or machine learning or statistics.
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