Resource-aware Federated Learning
Abstract:
At the macroscopic scale, traffic is usually represented as a fluid flowing through the road network. To characterize the evolution of the system, aggregate quantities such as the flow Q = Q(t, x) (it veh/h) or the density rho = rho(t, x) (it veh/km) of vehicles are defined. The challenge is to be able to understand, reproduce and anticipate the evolution of density and flow in space and time based on both this mathematical modeling and traffic data. Existing physical traffic flow models, such as Lighthill-Whitham-Richards (LWR) models, which can only capture real-world traffic dynamics to a limited extent, result in low-quality estimation and require massive data for accurate and generalizable estimation. To solve this problem, we use Physics-Informed Neural Networks (PINNs) techniques which have been shown to date to be an efficient numerical tool that provides solutions to partial differential equations (PDEs), even though, theoretically, they have limited ability to solve problems with continuous solutions. Particularly, we focus on the LWR model with observed loop detector data, using traffic density as the traffic variables. We show the advantages and disadvantages of PINNs technique for solving (with loop detector data) LWR physical traffic flow models, and suggest strategies for dealing with the problems that arise when we use neural networks.